GALOIS THEORY TOPIC 1
CONSTRUCTIBILITY

PAUL L. BAILEY

ABSTRACT. We discuss the classical Greek notion of constructibility of geo-
metric objects. The reader is invited to obtain a ruler and compass to perform
the exercises and follow the constructions described in the proofs.

1. CONSTRUCTION WITH STRAIGHT-EDGE AND COMPASS

The drawings of the ancient Greek geometers were made using two instruments:
a straight-edge and a compass.

A straight-edge draws lines. With the straightedge, we are permitted to draw
a straight line of indefinite length through any two given distinct points. The
straight-edge is unmarked; it cannot measure distances.

A compass draws circles. With the compass, we are permitted to draw a circle
with any given point as the center and passing through any given second point. The
compass collapses if it is lifted; we are not a priori permitted to use it to measure
the distance between given points, and draw a circle around another given point of
the same radius.

The straight-edge and the compass have come to be known as Fuclidean tools,
although the quest to construct points using them pre-dates Euclid by two centuries.

2. THE THREE GREEK PROBLEMS

As the Greeks investigated what could be accomplished with their Euclidean
tools, three interesting unsolved problems arose.

Problem 1 (Duplication of the Cube). Given a cube, construct a cube with double
the volume.

Problem 2 (Trisection of an Angle). Given an angle, construct an angle one third
as large.

Problem 3 (Quadrature of the Circle). Given a circle, construct a square with the
same area.

We now attempt to make the statements of these problems precise, using modern
notation.
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3. CONSTRUCTION OF POINTS IN A PLANE

Let P denote the set of all points in a plane. Let @ C P.

Let £(Q) denote the set of all lines in P which pass through at least two points in
Q; these are the lines constructible from Q in one stage. Let K(Q) denote the set of
all circles in P whose center is a point in () which pass through at least one point in
Q; these are the circles constructible from Q in one stage. Let O(Q) = L(Q)UK(Q);
these are the objects constructible from Q) in one stage. Let

C(Q) ={A € P| there exists 01,02 € O(Q) such that A € O; N 02} U Q.

These are the points constructible from @ in one stage.
Now let Co(Q) = @, and for ¢ > 1 inductively define

Ci(Q) =C(Ci-1(Q))-
Then C;(Q) is the set of points constructible from Q in i stages.
Finally, set
Coo (@) = U, Ci(Q).
This is the set of points constructible from Q. Note that if A € Cx(Q), then
A € C;(Q) for some i. We say that A € P is constructible from Q if A € C;(Q)

for some ¢. Similarly, we say that a line or circle is constructible from @ if it is in
0(€;(Q)) for some 1.

Exercise 1. Let P be a plane. Find the number of points which are constructible
in one stage from Q C P, where Q) contains

(a) a single point;

(b) two distinct points;

(c) the vertices of an equilateral triangle;

(d) an acute isosceles triangle;

(e) an obtuse isosceles triangle.

Do (d) and (e) depend on the triangle chosen?



4. STANDARD CONSTRUCTIONS

Let P denote a plane. For A, B € P, define the following;:

AB is the line in P through A and B;

AB is the line segment between A and B;
|AB]| is the distance between A and B;

A — B is the circle through B with center A.

Also, if C, D € P, then AB || CD represents the statement that line AB is parallel
to line CD, and AB | CD represents the statement that line AB is perpendicular
to line CD.

Let @ be a set of points in the plane. We say that a line segment is constructible
from @ if its endpoints are constructible from @

Proposition 1. Given points A and B, it is possible to construct the midpoint Z
of AB.
Construction. We are given A and B.

(a) Let C and D be the points of intersection of circle A — B and circle B — A.
(b) Let Z be the intersection of line AB and line CD.

Then Z is the midpoint of AB. (]

Proposition 2. Given points A and B, it is possible to construct a point Z such
that AB | BZ.

Construction. We are given A and B.
(a) Let C be the point of intersection of line AB and circle B — A which is not

A.
(b) Let Z be one of the points of intersection of circle A — C and circle C' — A.
Then AB | BZ. O

Proposition 3. Given noncolinear points A, B, and C, it is possible to construct
a point Z on the line AB such that AB 1 CZ.

Construction. We are given A, B, and C. If CB 1L AB, let Z = C. Otherwise,
construct Z as follows.

(a) Let D be the point of intersection of line AB and circle C' — B which is not
B.
(b) Let Z be the midpoint of BD.

Then AB 1 CZ. |

Proposition 4. Given noncolinear points A, B, and C, it is possible to construct
a point Z such that AB || CZ.

Construction. We are given A, B, and C.
(a) Let D be the point of intersection of line AB and the line through C' which
is perpendicular to line AB.
(a) Let Z be the point of intersection of the line through A which is perpen-
dicular to line AB and the line through C' which is perpendicular to line
CD.

Then AB || CZ. O



5. TRANSFERENCE OF DISTANCE

Suppose we are given points A, B, and C. A modern compass is capable of
holding its shape when lifted from the page, so that the distance between A and
B can be measured using the modern compass, and then the compass is set down
on C to draw a circle with center C' and radius |AB|. We may call this process
transference of distance. The Euclidean compass is not a priori capable of this feat;
however, we can prove that this construction is possible.

Proposition 5. Given noncolinear points A, B, and C, it is possible to construct
a point Z such that polygon ABCZ is a parallelogram.

Construction. We have points A, B, and C.

(a) Let E be the point of intersection of line BC' and circle B — A which lies
on the C side of B.
(b) Let F be the midpoint of AFE.
(c) Let G be the point of intersection of line BF and circle F' — B which is not
B.
Now |AB| = |BC|, so AABC is isosceles. Moreover, F is the midpoint of the base
of this isosceles triangle, so ZBF'E is right, whence ZEFG is right, so ABFE =
AGFE. Similarly, AAFB &2 ANAFG; thus |AB| = |BE| = |GE| = |GA|. There-
fore polygon ABEG is a parallelogram, and in particular, line AG is parallel to line
BC.
(e) Let Z be the point of intersection of the line through C' which is parallel to
AB.

Now polygon ABCZ is a parallelogram. O

Proposition 6 (Transference of Distance). Given points A, B, and C, it is possible
to construct a point Z such that |AB| = |CZ)|.

Construction. Form parallelogram ABCZ. (]



6. CONSTRUCTION OF SQUARES

A square is constructible if its vertices are constructible.

Quadrature is the process of constructing a square whose area is equal to the
area of a given plane region. A plane region with area x is called quadrable if it is
possible to construct a square with area x. By the Proposition 2, this is equivalent
to the the ability to construct a line segment of length /z.

The ancient Egyptians estimated areas of certain regions; for example they es-
timated that the square on 8/9 of the diameter of a circle is its quadrature. The
area x of the circle with radius r would then be approximately

(8 2256 ,
T~ (9(2r)) =g
this produces 7 =~ 3.16049.

The ancient Greeks concentrated on discovering which regions were precisely
quadrable, via construction with Euclidean tools.

The third Greek problem asks if a given circle is quadrable.

7. CONSTRUCTION OF ANGLES

Let P denote a plane. For A, B,C € P, define the following:
e /ABC is the angle between the line segments AB and BC.

We say that an angle « is constructible from @ C P if it is possible to construct
points A, B, and C from @ such that o« = ZABC.

To say that an angle « is given; means that we are given points 4, B, and C' such
that « = ZABC'. A bisector of this angle is a line BD such that ZABD = /DBC;
then necessarily ZABD = §.

Proposition 7. Given an angle ZABC), it is possible to construct a point Z such
that ZABZ = /ZBC = £45€.

Construction. We are given A, B, and C, with B as the vertex of the angle.

(a) Let D be the point of intersection of BC' and B — C.
(a) Let Z be the midpoint of C'D.

Then LABZ = £ZBC. O

Thus every given angle is bisectable; the second Greek problem asks if every given
angle is trisectable.



8. CONSTRUCTION OF POINTS IN SPACE

Let S denote the set of all points in three dimensional space, and let A, B € S.
Although the line through A and B is well defined, there are many circles in space
whose center is A which pass through B. We do not wish to say that all such circles
are constructible.

We say that a plane P C S is constructible from a set @) C S if there exist three
noncolinear points in () which lie on P. Now circles are constructible from @ if we
may construct the plane on which they lie. This gives meaning to the notion of
constructibility of a point in space.

A cube is constructible if it is possible to construct its vertices in space.

The first Greek problem asks if, given a cube in space, it is possible to construct
a cube in space whose volume is double that of the given cube. This is equivalent
to asking if, given a line segment whose length is that of a side of the original cube,
it is possible to construct a line segment whose length is that of a cube with double
the volume.

9. CONSTRUCTION OF REAL NUMBERS

Let P be a plane and let Q C P. Let x € R. We say that z is constructible from
Q if a line segment whose length is |z| is constructible from . Moreover, we say
simply that z is a constructible real number if x is constructible from {4, B} for
some A, B € P with |AB| = 1. Since we may consider a point to be a line segment
of length 0, we consider 0 to be a constructible number.

Proposition 8. Let z,y € R be constructible. Then x + y is constructible.

Construction. Since x and y are constructible, it is possible to construct line seg-
ments of length |z| and |y|. By Proposition 6, it is possible to construct a circle of
radius |y| centered at any given point.
(a) Let A and B be points such that |AB| = |z|.
Case 1 First assume that x and y have the same sign.
(b) Let Z be the point of intersection of line AB and the circle centered at B
of radius y such that B lies on AZ.
Now AZ is a line segment of length |x| + |y| = |z + y|.
Case 2 Next assume that x and y have different signs, and without loss of
generality assume that |x| > |y].
(b) Let Z be the point of intersection of line AB and the circle centered at B
of radius y such that Z lies on AB.
Now AZ is a line segment of length |x| — |y| = |z + y|. O

Proposition 9. Let © € R be constructible. Then —x is constructible.

Reason. This follows immediately from the definition. O



Proposition 10. Let x,y € R be constructible. Then xy is constructible.

Construction. Since 1, z and y are constructible, it is possible to construct line
segments of length 1, |z|, and |y|. Without loss of generality, we may assume that
x and y are positive.
(a) Let A and B be points such that |[AB| = x.
(b) Let C be a point of intersection of the line through A which is perpendicular
to line AB and a circle centered at A of radius 1.
(c) Let D be the point of intersection line through AC and the circle centered
at C of radius y such that C does not lie on AD.
(d) Let Z be the intersection of line BC and the line through D which is parallel
to AB.

Set z = |[DZ|; then ACAB is similar to ACDZ, so 2 = ¥, whence z = zy. O

z?
Proposition 11. Let x € R\ {0} be constructible. Then L is constructible.

Construction. Since 1 and z are constructible, it is possible to construct line seg-
ments of length 1 and |z|. Without loss of generality, assume that z is positive.
(a) Let A and B be points such that |[AB| = x.
(b) Let C be the point of intersection of line AB and the circle centered at A
of radius 1 such that A is not on BC.
(c) Let D be a point of intersection of the line through A which is perpendicular
to line AB and the circle centered at A of radius 1.
(d) Let Z be the point of intersection of line AD and the line through C' which
is parallel to line BD.

Set z = |AZ|; then AZAC is similar to ADAB, so ¥ = %, that is, z = + O

-

A subset F' C R with at least two elements is a field if it is closed under the
operations of addition, subtraction, multiplication, and division. We have seen that
the set of all constructible real numbers is a field. In particular, all rational numbers
are constructible. Are there any others?



We show that the set of constructible numbers is closed under square roots; to
do this, we need a couple of lemmas. Let’s assume the geometric facts that the sum
of angles in a triangle is 180°, and that the base angles of an equilateral triangle
are equal.

Lemma 1. (Thales Theorem) An angle inscribed in a semicircle is right.

Proof. Consider a semicircle with center O and diameter BC, and let A be an
arbitrary point on the semicircle; we wish to show that Z/BAC is right. Now
|OA| = |OB] = |OC|, so ABOA and ACOA are isosceles triangles. Let o =
/OBA = ZOAB and g = ZOCA = LZOAC; then /BAC = a + . Adding the
angles AABC we obtain

180° = ZOBA+ LOCA+ ZBAC = a+ S+ (a+ 8) =2(a+ 3).
Therefore, /ZBAC = a+ 3 = 90°. O

Lemma 2. Let ZACB be right, and let D € AB such that AB 1. CD.
Then NACB ~ AADC ~ ACDB.

Proof. Two triangles are similar if and only if they have two equal angles. Since
/ACB = ZADC = ZCDB = 90°, ZDAC is shared by two of the triangles, and
ZDBC is shared by two of the triangles, the result follows. (I

Proposition 12. Let x € R be a constructible number. Then \/|x| is constructible.

Construction. Since 1 and = are constructible, it is possible to construct line seg-
ments of length 1 and |z|. We may assume that x is positive.
(a) Let A and B be points such that |[AB| = x.
(b) Let C be the point of intersection of line AB and the circle centered at B
of radius 1 such that B is on AC.
(c¢) Let D be the midpoint of AC.
(d) Let Z be a point of intersection of the line through B which is perpendicular
to line AB and the circle D — A.
Let z = |BZ|. Now LZBA = £ZZBC = 90°; moreover, ZAZC is right by Thales
theorem. Therefore AZBC' is similar to AABZ. Thus Z = %, whence 2% = z, so

z=/x. O
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