
GALOIS THEORY TOPIC I
CONSTRUCTIBILITY

PAUL L. BAILEY

Abstract. We discuss the classical Greek notion of constructibility of geo-

metric objects. The reader is invited to obtain a ruler and compass to perform
the exercises and follow the constructions described in the proofs.

1. Construction with Straight-Edge and Compass

The drawings of the ancient Greek geometers were made using two instruments:
a straight-edge and a compass.

A straight-edge draws lines. With the straightedge, we are permitted to draw
a straight line of indefinite length through any two given distinct points. The
straight-edge is unmarked; it cannot measure distances.

A compass draws circles. With the compass, we are permitted to draw a circle
with any given point as the center and passing through any given second point. The
compass collapses if it is lifted; we are not a priori permitted to use it to measure
the distance between given points, and draw a circle around another given point of
the same radius.

The straight-edge and the compass have come to be known as Euclidean tools,
although the quest to construct points using them pre-dates Euclid by two centuries.

2. The Three Greek Problems

As the Greeks investigated what could be accomplished with their Euclidean
tools, three interesting unsolved problems arose.

Problem 1 (Duplication of the Cube). Given a cube, construct a cube with double
the volume.

Problem 2 (Trisection of an Angle). Given an angle, construct an angle one third
as large.

Problem 3 (Quadrature of the Circle). Given a circle, construct a square with the
same area.

We now attempt to make the statements of these problems precise, using modern
notation.
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3. Construction of Points in a Plane

Let P denote the set of all points in a plane. Let Q ⊂ P .
Let L(Q) denote the set of all lines in P which pass through at least two points in

Q; these are the lines constructible from Q in one stage. Let K(Q) denote the set of
all circles in P whose center is a point in Q which pass through at least one point in
Q; these are the circles constructible from Q in one stage. Let O(Q) = L(Q)∪K(Q);
these are the objects constructible from Q in one stage. Let

C(Q) = {A ∈ P | there exists O1, O2 ∈ O(Q) such that A ∈ O1 ∩O2} ∪Q.

These are the points constructible from Q in one stage.
Now let C0(Q) = Q, and for i ≥ 1 inductively define

Ci(Q) = C(Ci−1(Q)).

Then Ci(Q) is the set of points constructible from Q in i stages.
Finally, set

C∞(Q) = ∪∞i=1Ci(Q).
This is the set of points constructible from Q. Note that if A ∈ C∞(Q), then
A ∈ Ci(Q) for some i. We say that A ∈ P is constructible from Q if A ∈ Ci(Q)
for some i. Similarly, we say that a line or circle is constructible from Q if it is in
O(Ci(Q)) for some i.

Exercise 1. Let P be a plane. Find the number of points which are constructible
in one stage from Q ⊂ P , where Q contains

(a) a single point;
(b) two distinct points;
(c) the vertices of an equilateral triangle;
(d) an acute isosceles triangle;
(e) an obtuse isosceles triangle.

Do (d) and (e) depend on the triangle chosen?
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4. Standard Constructions

Let P denote a plane. For A,B ∈ P , define the following:
• AB is the line in P through A and B;
• AB is the line segment between A and B;
• |AB| is the distance between A and B;
• A−B is the circle through B with center A.

Also, if C,D ∈ P , then AB ‖ CD represents the statement that line AB is parallel
to line CD, and AB ⊥ CD represents the statement that line AB is perpendicular
to line CD.

Let Q be a set of points in the plane. We say that a line segment is constructible
from Q if its endpoints are constructible from Q

Proposition 1. Given points A and B, it is possible to construct the midpoint Z
of AB.

Construction. We are given A and B.
(a) Let C and D be the points of intersection of circle A−B and circle B−A.
(b) Let Z be the intersection of line AB and line CD.

Then Z is the midpoint of AB. �

Proposition 2. Given points A and B, it is possible to construct a point Z such
that AB ⊥ BZ.

Construction. We are given A and B.
(a) Let C be the point of intersection of line AB and circle B−A which is not

A.
(b) Let Z be one of the points of intersection of circle A−C and circle C −A.

Then AB ⊥ BZ. �

Proposition 3. Given noncolinear points A, B, and C, it is possible to construct
a point Z on the line AB such that AB ⊥ CZ.

Construction. We are given A, B, and C. If CB ⊥ AB, let Z = C. Otherwise,
construct Z as follows.

(a) Let D be the point of intersection of line AB and circle C−B which is not
B.

(b) Let Z be the midpoint of BD.
Then AB ⊥ CZ. �

Proposition 4. Given noncolinear points A, B, and C, it is possible to construct
a point Z such that AB ‖ CZ.

Construction. We are given A, B, and C.
(a) Let D be the point of intersection of line AB and the line through C which

is perpendicular to line AB.
(a) Let Z be the point of intersection of the line through A which is perpen-

dicular to line AB and the line through C which is perpendicular to line
CD.

Then AB ‖ CZ. �
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5. Transference of Distance

Suppose we are given points A, B, and C. A modern compass is capable of
holding its shape when lifted from the page, so that the distance between A and
B can be measured using the modern compass, and then the compass is set down
on C to draw a circle with center C and radius |AB|. We may call this process
transference of distance. The Euclidean compass is not a priori capable of this feat;
however, we can prove that this construction is possible.

Proposition 5. Given noncolinear points A, B, and C, it is possible to construct
a point Z such that polygon ABCZ is a parallelogram.

Construction. We have points A, B, and C.
(a) Let E be the point of intersection of line BC and circle B − A which lies

on the C side of B.
(b) Let F be the midpoint of AE.
(c) Let G be the point of intersection of line BF and circle F −B which is not

B.
Now |AB| = |BC|, so 4ABC is isosceles. Moreover, F is the midpoint of the base
of this isosceles triangle, so ∠BFE is right, whence ∠EFG is right, so 4BFE ∼=
4GFE. Similarly, 4AFB ∼= 4AFG; thus |AB| = |BE| = |GE| = |GA|. There-
fore polygon ABEG is a parallelogram, and in particular, line AG is parallel to line
BC.

(e) Let Z be the point of intersection of the line through C which is parallel to
AB.

Now polygon ABCZ is a parallelogram. �

Proposition 6 (Transference of Distance). Given points A, B, and C, it is possible
to construct a point Z such that |AB| = |CZ|.

Construction. Form parallelogram ABCZ. �
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6. Construction of Squares

A square is constructible if its vertices are constructible.
Quadrature is the process of constructing a square whose area is equal to the

area of a given plane region. A plane region with area x is called quadrable if it is
possible to construct a square with area x. By the Proposition 2, this is equivalent
to the the ability to construct a line segment of length

√
x.

The ancient Egyptians estimated areas of certain regions; for example they es-
timated that the square on 8/9 of the diameter of a circle is its quadrature. The
area x of the circle with radius r would then be approximately

x ≈
(8

9
(2r)

)2

=
256
81

r2;

this produces π ≈ 3.16049.
The ancient Greeks concentrated on discovering which regions were precisely

quadrable, via construction with Euclidean tools.
The third Greek problem asks if a given circle is quadrable.

7. Construction of Angles

Let P denote a plane. For A,B,C ∈ P , define the following:
• ∠ABC is the angle between the line segments AB and BC.

We say that an angle α is constructible from Q ⊂ P if it is possible to construct
points A, B, and C from Q such that α = ∠ABC.

To say that an angle α is given; means that we are given points A, B, and C such
that α = ∠ABC. A bisector of this angle is a line BD such that ∠ABD = ∠DBC;
then necessarily ∠ABD = α

2 .

Proposition 7. Given an angle ∠ABC, it is possible to construct a point Z such
that ∠ABZ = ∠ZBC = ∠ABC

2 .

Construction. We are given A, B, and C, with B as the vertex of the angle.
(a) Let D be the point of intersection of BC and B − C.
(a) Let Z be the midpoint of CD.

Then ∠ABZ = ∠ZBC. �

Thus every given angle is bisectable; the second Greek problem asks if every given
angle is trisectable.
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8. Construction of Points in Space

Let S denote the set of all points in three dimensional space, and let A,B ∈ S.
Although the line through A and B is well defined, there are many circles in space
whose center is A which pass through B. We do not wish to say that all such circles
are constructible.

We say that a plane P ⊂ S is constructible from a set Q ⊂ S if there exist three
noncolinear points in Q which lie on P . Now circles are constructible from Q if we
may construct the plane on which they lie. This gives meaning to the notion of
constructibility of a point in space.

A cube is constructible if it is possible to construct its vertices in space.
The first Greek problem asks if, given a cube in space, it is possible to construct

a cube in space whose volume is double that of the given cube. This is equivalent
to asking if, given a line segment whose length is that of a side of the original cube,
it is possible to construct a line segment whose length is that of a cube with double
the volume.

9. Construction of Real Numbers

Let P be a plane and let Q ⊂ P . Let x ∈ R. We say that x is constructible from
Q if a line segment whose length is |x| is constructible from Q. Moreover, we say
simply that x is a constructible real number if x is constructible from {A,B} for
some A,B ∈ P with |AB| = 1. Since we may consider a point to be a line segment
of length 0, we consider 0 to be a constructible number.

Proposition 8. Let x, y ∈ R be constructible. Then x + y is constructible.

Construction. Since x and y are constructible, it is possible to construct line seg-
ments of length |x| and |y|. By Proposition 6, it is possible to construct a circle of
radius |y| centered at any given point.

(a) Let A and B be points such that |AB| = |x|.
Case 1 First assume that x and y have the same sign.
(b) Let Z be the point of intersection of line AB and the circle centered at B

of radius y such that B lies on AZ.
Now AZ is a line segment of length |x|+ |y| = |x + y|.

Case 2 Next assume that x and y have different signs, and without loss of
generality assume that |x| ≥ |y|.

(b) Let Z be the point of intersection of line AB and the circle centered at B
of radius y such that Z lies on AB.

Now AZ is a line segment of length |x| − |y| = |x + y|. �

Proposition 9. Let x ∈ R be constructible. Then −x is constructible.

Reason. This follows immediately from the definition. �
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Proposition 10. Let x, y ∈ R be constructible. Then xy is constructible.

Construction. Since 1, x and y are constructible, it is possible to construct line
segments of length 1, |x|, and |y|. Without loss of generality, we may assume that
x and y are positive.

(a) Let A and B be points such that |AB| = x.
(b) Let C be a point of intersection of the line through A which is perpendicular

to line AB and a circle centered at A of radius 1.
(c) Let D be the point of intersection line through AC and the circle centered

at C of radius y such that C does not lie on AD.
(d) Let Z be the intersection of line BC and the line through D which is parallel

to AB.
Set z = |DZ|; then 4CAB is similar to 4CDZ, so 1

x = y
z , whence z = xy. �

Proposition 11. Let x ∈ R r {0} be constructible. Then 1
x is constructible.

Construction. Since 1 and x are constructible, it is possible to construct line seg-
ments of length 1 and |x|. Without loss of generality, assume that x is positive.

(a) Let A and B be points such that |AB| = x.
(b) Let C be the point of intersection of line AB and the circle centered at A

of radius 1 such that A is not on BC.
(c) Let D be a point of intersection of the line through A which is perpendicular

to line AB and the circle centered at A of radius 1.
(d) Let Z be the point of intersection of line AD and the line through C which

is parallel to line BD.
Set z = |AZ|; then 4ZAC is similar to 4DAB, so z

1 = 1
x , that is, z = 1

x . �

A subset F ⊂ R with at least two elements is a field if it is closed under the
operations of addition, subtraction, multiplication, and division. We have seen that
the set of all constructible real numbers is a field. In particular, all rational numbers
are constructible. Are there any others?
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We show that the set of constructible numbers is closed under square roots; to
do this, we need a couple of lemmas. Let’s assume the geometric facts that the sum
of angles in a triangle is 180◦, and that the base angles of an equilateral triangle
are equal.

Lemma 1. (Thales Theorem) An angle inscribed in a semicircle is right.

Proof. Consider a semicircle with center O and diameter BC, and let A be an
arbitrary point on the semicircle; we wish to show that ∠BAC is right. Now
|OA| = |OB| = |OC|, so 4BOA and 4COA are isosceles triangles. Let α =
∠OBA = ∠OAB and β = ∠OCA = ∠OAC; then ∠BAC = α + β. Adding the
angles 4ABC we obtain

180◦ = ∠OBA + ∠OCA + ∠BAC = α + β + (α + β) = 2(α + β).

Therefore, ∠BAC = α + β = 90◦. �

Lemma 2. Let ∠ACB be right, and let D ∈ AB such that AB ⊥ CD.
Then 4ACB ∼ 4ADC ∼ 4CDB.

Proof. Two triangles are similar if and only if they have two equal angles. Since
∠ACB = ∠ADC = ∠CDB = 90◦, ∠DAC is shared by two of the triangles, and
∠DBC is shared by two of the triangles, the result follows. �

Proposition 12. Let x ∈ R be a constructible number. Then
√
|x| is constructible.

Construction. Since 1 and x are constructible, it is possible to construct line seg-
ments of length 1 and |x|. We may assume that x is positive.

(a) Let A and B be points such that |AB| = x.
(b) Let C be the point of intersection of line AB and the circle centered at B

of radius 1 such that B is on AC.
(c) Let D be the midpoint of AC.
(d) Let Z be a point of intersection of the line through B which is perpendicular

to line AB and the circle D −A.
Let z = |BZ|. Now ∠ZBA = ∠ZBC = 90◦; moreover, ∠AZC is right by Thales
theorem. Therefore 4ZBC is similar to 4ABZ. Thus z

x = 1
z , whence z2 = x, so

z =
√

x. �
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